Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase.

نویسندگان

  • Anita Y M Howe
  • Johnathan Bloom
  • Carl J Baldick
  • Christopher A Benetatos
  • Huiming Cheng
  • Joel S Christensen
  • Srinivas K Chunduru
  • Glen A Coburn
  • Boris Feld
  • Ariamala Gopalsamy
  • William P Gorczyca
  • Steve Herrmann
  • Stephen Johann
  • Xiaoqun Jiang
  • Michelle L Kimberland
  • Girija Krisnamurthy
  • Matthew Olson
  • Mark Orlowski
  • Steve Swanberg
  • Ian Thompson
  • Megan Thorn
  • Alfred Del Vecchio
  • Dorothy C Young
  • Marja van Zeijl
  • John W Ellingboe
  • Janis Upeslacis
  • Marc Collett
  • Tarek S Mansour
  • John F O'Connell
چکیده

A novel nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), [(1R)-5-cyano-8-methyl-1-propyl-1,3,4,9-tetrahydropyano[3,4-b]indol-1-yl] acetic acid (HCV-371), was discovered through high-throughput screening followed by chemical optimization. HCV-371 displayed broad inhibitory activities against the NS5B RdRp enzyme, with 50% inhibitory concentrations ranging from 0.3 to 1.8 microM for 90% of the isolates derived from HCV genotypes 1a, 1b, and 3a. HCV-371 showed no inhibitory activity against a panel of human polymerases, including mitochondrial DNA polymerase gamma, and other unrelated viral polymerases, demonstrating its specificity for the HCV polymerase. A single administration of HCV-371 to cells containing the HCV subgenomic replicon for 3 days resulted in a dose-dependent reduction of the steady-state levels of viral RNA and protein. Multiple treatments with HCV-371 for 16 days led to a >3-log10 reduction in the HCV RNA level. In comparison, multiple treatments with a similar inhibitory dose of alpha interferon resulted in a 2-log10 reduction of the viral RNA level. In addition, treatment of cells with a combination of HCV-371 and pegylated alpha interferon resulted in an additive antiviral activity. Within the effective antiviral concentrations of HCV-371, there was no effect on cell viability and metabolism. The intracellular antiviral specificity of HCV-371 was demonstrated by its lack of activity in cells infected with several DNA or RNA viruses. Fluorescence binding studies show that HCV-371 binds the NS5B with an apparent dissociation constant of 150 nM, leading to high selectivity and lack of cytotoxicity in the antiviral assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preclinical characterization of JTK-853, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase.

JTK-853 is a novel piperazine derivative nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase. JTK-853 showed potent inhibitory activity against genotype 1 HCV polymerase, with a 50% inhibitory concentration in the nanomolar range, and showed potent antiviral activity against the genotype 1b replicon, with a 50% effective concentration of 0.035 μM. The presence of hum...

متن کامل

TMC647055, a potent nonnucleoside hepatitis C virus NS5B polymerase inhibitor with cross-genotypic coverage.

Hepatitis C virus (HCV) infection is a major global health burden and is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma. There remains an unmet medical need for efficacious and safe direct antivirals with complementary modes of action for combination in treatment regimens to deliver a high cure rate with a short duration of treatment for HCV patients. Here we ...

متن کامل

الگوهای جدید درمانی برای عفونت ویروس هپاتیت C

Hepatitis C virus (HCV) infection has affected approximately 180 million people across the world. In most cases, HCV-infection remains chronic, which expose patients at high risk of cirrhosis and hepatocellular carcinoma. The rates of disease incidence and mortality diminish as a result of successful treatment of HCV infection. Until the recent years, despite the associated toxicities and l...

متن کامل

Hepatitis C virus (HCV) NS5B nonnucleoside inhibitors specifically block single-stranded viral RNA synthesis catalyzed by HCV replication complexes in vitro.

Replication complexes of hepatitis C virus synthesized two major species of viral RNA in vitro, double stranded and single stranded. NS5B nonnucleoside inhibitors inhibited dose dependently the synthesis of single-stranded RNA but not double-stranded RNA. Moreover, replication complexes carrying a mutation resistant to a nonnucleoside inhibitor lost their susceptibilities to the inhibitor.

متن کامل

The effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation

The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 48 12  شماره 

صفحات  -

تاریخ انتشار 2004